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Abstract—New nonlinear analysis tools for harmonic-injection
dividers are presented based on bifurcation concepts. The advan-
tage of these tools is their application simplicity and efficiency,
which has enabled their use for actual circuit design and opti-
mization. The tools allow control over the divided frequency and
output power and predict the variation of the synchronization
bands versus the circuit element values, which enables the design
correction. They have been extended to the analysis and optimiza-
tion of phase-locked harmonic-injection dividers, which contain a
low-frequency feedback loop. The use of this loop, together with
the accuracy of the analysis, has enabled the implementation of
novel frequency-division functions, such as the division of variable
order, versus a circuit parameter, or the division by fractional
order. The output noise of the frequency dividers is analyzed
through the conversion-matrix approach, studying the noise
variation along the division bands. The new techniques have been
applied to the design of a frequency divider by order 4 and 5, with
18-GHz input frequency, obtaining excellent agreement with the
experimental results.

Index Terms—Bifurcation, frequency divider, harmonic
injection, optimization methods, phase locking, phase noise.

I. INTRODUCTION

THE frequency divider is an essential component of
modern communication systems. Digital dividers are

commercially available up to -band [1]. For higher input
frequencies, analog dividers must be used, specifically de-
signed for each project. When employing concepts from digital
electronics, the number of transistors usually turns out to be
extremely large. This increases the computation time and pre-
vents the application of analysis techniques such as harmonic
balance (HB) [2]. On the other hand, analog division based on
harmonic-injection locking can be achieved with one or two
transistors only. It has no limitation in the operating frequency,
which can be as high as the maximum oscillation frequency of
the transistors employed in the design. In addition, the reduced
number of active devices should give smaller phase-noise
values. However, the analog division is typically narrow-band
[1]. The bandwidth decreases with the division order, so this
order is generally limited to two or three.

In recent studies [3], techniques to increase the operation
bandwidth of fundamentally synchronized oscillators have been
proposed, with excellent experimental results. The techniques
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consist in the introduction of an external low-frequency feed-
back loop and the new circuit is called injection-locked phase-
locked loop (ILPLL). Their application to harmonic-injection
dividers is also possible, but requires an accurate prediction of
the circuit behavior. In [3], the synchronization bandwidth is es-
timated through approximate expressions, but no nonlinear sim-
ulation, taking into account the entire harmonic content and ac-
curate description of the circuit elements, is carried out. The
difficulties in the design and simulation of harmonic-injection
dividers are due to the complex subharmonic regime in which
these circuits operate. Actually, the division bands are delimited
by bifurcation phenomena [4]–[6] and exhaustive parametric
simulations of microwave dividers have only been presented for
division order [2], [6]. Frequency division of higher
order requires control over the self-oscillation and its harmonic
content and the capability to correct the negative effects of par-
asitics and line discontinuities.

In this paper, new nonlinear analysis techniques for frequency
dividers, based on accurate bifurcation detection, are presented.
They have the advantage of their straightforward application to
complex microwave circuits, not requiring the use of param-
eter-switching [2], [6] continuation methods, which has facil-
itated the extension to divisions by high order . The applica-
tion simplicity allows the employment of these techniques for
actual circuit design and optimization. Today, and due to the
high nonlinearity of the frequency-division regime, it is not pos-
sible to impose in advance the division bandwidth as a design
specification. Instead, a new procedure is presented here, based
on the determination of bifurcation loci versus the circuit-ele-
ment values, using additional constraints over the free-running
oscillation point. The increased control over the synchronized
solution has enabled the investigation of new analog functions
such as the switching of the division order between and
and the division by fractional order .

In [3], it was shown how the introduction of a low-frequency
loop into an injection-locked oscillator enabled the phase
locking of the oscillator, giving rise to a substantial increase
of the synchronization band. One of the novelties of the study
carried out here is the introduction of this low-frequency
loop to enlarge the inherently narrow division bands and

. The new design and simulation tools are applied to
this frequency-divider configuration for an optimized design.
The output noise of the dividers is analyzed, studying its
variation along the division bands and the influence of the
proximity to the band limits. To illustrate the new techniques,
a MESFET-based divider, with 18-GHz input frequency, has
been designed and made. The objective is the design of a har-
monic-injection frequency divider by , in combination
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Fig. 1. Schematic of the harmonic-injection divider. The low-frequency
feedback loop is included at a later design stage. This loop consists of a
differential amplifier, with a reference dc signal, plus two RF chokes. The AG
is used for analysis and optimization.

with phase-locking techniques, through the introduction of a
low-frequency feedback loop. The input-frequency band for
division by is also determined, studying the possibility
of switching the division order between these two values. The
new techniques enable the optimization of the divider for an
initially selected topology that is maintained through the whole
design process. Here, a relatively simple topology has been
employed, although the techniques can equally be applied to
more complex circuits. It must be emphasized that the aim is
not to present an ultimate divider topology, but to show the
capabilities and flexibility of the new tools for an optimized
design of harmonic-injection dividers, which constitute a valu-
able choice for narrow-band applications at high microwave
frequencies.

This paper is organized as follows. Section II is devoted to
the optimization of the free-running oscillator regime in which
the harmonic-injection divider operates in the absence of input
signal. The aim is to improve the frequency-division capabili-
ties of the circuit once the input generator is connected. In Sec-
tion III, techniques for the nonlinear analysis of the frequency
divider by order are presented. In Section IV, the design is op-
timized to correct the effect of parasitic elements. The low-fre-
quency feedback loop is introduced at this stage. The fractional
order division is studied in Section V. The output noise of
the frequency divider is analyzed in Section VI. The variations
of both the phase and amplitude noise spectral densities along
the frequency-division bands will be studied. In the Appendix,
some concepts from nonlinear dynamics that directly apply to
harmonic-injection frequency dividers are summarized.

II. OPTIMIZATION OF THE FREE-RUNNING OSCILLATION

To obtain a harmonic-injection divider (see the Appendix),
to which phase-locking techniques are to be applied, a
voltage-controlled oscillator (VCO) must be initially designed.
The topology chosen here (Fig. 1) uses source feedback (with
the inclusion of a varactor diode) to achieve the free-running
oscillation. Since the objective is the design of a frequency
divider by , with 18-GHz input frequency, the oscillation

frequency must be GHz. A bias point ,
is initially selected, fitting the gate circuit so as to obtain
negative resistance at the drain terminal about the desired
oscillation frequency . To complete the oscillator design, a
load circuit, enabling resonance at , is introduced at the drain
port. The circuit is analyzed through HB, with the aid of a
voltage auxiliary generator (AG) [2], [4]. The AG is connected
in parallel at a circuit node (Fig. 1) and allows the nonlinear
optimization of the circuit for prefixed values of the steady-state
oscillation frequency and amplitude. The AG frequency is
set to the desired oscillation frequency ( ) and its
amplitude ( ) can be fixed according to the desired
voltage value at the AG location. Here, two different locations
have been employed. At the transistor terminals, like the drain
terminal, better sensitivity is obtained, so this location is useful
at initial design stages. In parallel with the 50- load, it enables
the fixing of the output power. This power will, of course,
have limitations inherent to the active devices and the circuit
topology. In order for the voltage AG not to short circuit the
non- frequency components, an ideal filter is used (Fig. 1),
which exhibits zero impedance at the frequency
and infinite impedance at the frequencies . The
load-circuit elements are then calculated/optimized through HB
so as to fulfill the nonperturbation condition , with
being the complex ratio between the first harmonic component
of the current through the AG and AG voltage. The fixing
of the oscillation frequency through during the
optimization prevents any frequency shift of the steady-state
oscillation due to nonlinear effects.

The values V (at the drain terminal) and
GHz have been used here for a varactor bias

voltage V in the middle of the capacitance-vari-
ation range. The load-circuit elements are obtained through
optimization with the goal . Once the condition is
achieved, the stability of resulting steady-state oscillation must
be checked [6] together with the fulfillment of the conditions
for the oscillation startup. The resulting design will be corrected
so as to increase its frequency-division capabilities, according
to the technique that is explained below.

In the analog divider by , sensitivity to the input-gener-
ator signal and synchronization is achieved through the mixing
of the input signal at with the feedback signal at

, which gives rise to a lower intermodulation product in
the order of the oscillation frequency. Thus, the input circuit
in Fig. 1 must behave as a bandpass filter at the generator fre-
quency . After synchronization, the relationship
is fulfilled. In the design carried out here, the drain–current non-
linearity of the MESFET transistor mixes the two signals at
and entering the gate port. Taking this into account,
the above free-running oscillator design will be corrected so as
to increase the harmonic amplitude of the self-oscillation at the
orders (for the divider by ) and
(for the divider by ) at the gate port. Although the design
of the feedback network is essential, for the sake of simplicity,
this network is made up here by the varactor diode only, with its
complete equivalent model. The increase in the harmonic con-
tent will be achieved through modification of the operation point
of the transistor, varying the bias sources and the load elements.
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Fig. 2. Free-running oscillator. Technique for increasing the gate voltage
amplitude at the harmonic orders N = 3 and N = 4, while keeping constant
the oscillation frequency at f = 4:5 GHz. (a) A sweep is performed in the
drain bias voltage V for two values of the gate bias voltage V . Each point
of the curves corresponds to a different design (different values of the oscillator
load elements). (b) Comparison of the voltage spectrum at the gate terminal for
two different designs with the same oscillation frequency.

To evaluate the harmonic amplitude at , a contin-
uation technique is applied using the design seen above as the
starting point. This allows the circuit oscillation at the desired
frequency to be maintained during the whole process. Dif-
ferent gate bias values between 0.5 and 1.5 V have
been tested, performing a sweep in the drain bias . The
AG (at , ) fixes, for each , , the desired value of
the free-running oscillation frequency and the voltage am-
plitude at the AG position. For each point of the sweep,
the values of two circuit elements are determined so as to fulfill
the nonperturbation conditions . To avoid con-
vergence problems, a continuation technique is applied, using
the final values , obtained for as the ini-
tial guess for . The optimized parameters , were the
load resistance and inductance, obtaining the results of Fig. 2(a).
The output power varies with and the load elements. How-
ever, the fixed AG amplitude avoids a severe decrease of the
first harmonic amplitude during the process. As expected, the
highest harmonic amplitudes correspond to corners of the char-
acteristic curves with very nonlinear behavior. Of course, this is
only a numerical analysis of the harmonic-generation capabili-
ties of the oscillator topology so, once an operation point is se-
lected, the oscillation startup conditions and the stability of the
steady-state oscillation must be checked [6]. The analysis also
allows the evaluation of the efficiency for different bias voltages

and load-element values. The lowest efficiency corresponds to
the highest harmonic values, thus, whenever this efficiency is a
design constraint, a compromise must be achieved.

Two spectra, at the gate port, can be compared in Fig. 2(b).
Both of them have exactly the same fundamental frequency
( GHz) and voltage amplitude ( V) at the AG po-
sition. Bias-point 1 is V, V, whereas bias-
point 2, with the richest harmonic content, is V,

V. The high harmonic content is filtered out at the
circuit load, through the use of an inductive element. This capa-
bility to set the free-running oscillation frequency and voltage
level, while increasing the harmonic content at the mixing port,
constitutes the novelty of the analysis. For the final transistor
bias values, the oscillation-frequency range versus the varactor
bias voltage is GHz, centered about GHz.

III. NONLINEAR ANALYSIS OF THE HARMONIC-INJECTION

FREQUENCY DIVIDER

In this section, two different techniques for the analysis of
harmonic-injection dividers are presented. The first technique
is a semianalytical calculation that relies on the nonlinear
analysis of the free-running oscillation (in the absence of RF
input power) and the derivatives of the AG admittance function

at the oscillation point. The second technique
is a continuation algorithm of very simple application to HB
software.

A. Semianalytical Estimation of the Synchronization Bands

When an input generator is connected to the oscillator circuit,
the synchronization bandwidths, for small amplitude of this gen-
erator, can be approximately determined through a linearization
of the circuit about its nonlinear free-running oscillator regime
[9]. Actually, for small amplitude of the input generator, the
synchronized solution can be treated as a perturbation of the
free-running oscillation. Different estimations for the synchro-
nization bandwidths have been provided in the literature [3], [9].
They enable a fast evaluation of the circuit capabilities as a fre-
quency divider and allow design criteria to be obtained. How-
ever, in these expressions, only the first harmonic component of
the free-running oscillation (at a given oscillation port) is taken
into account. Moreover, the expressions depend on the quality
factor of the embedding circuit, which is not accurate when both
the real and imaginary parts of the total admittance/impedance
(at the oscillation port) are functions of the oscillation ampli-
tude and frequency. In order to clarify this, a new expression,
only depending on the free-running oscillation and amplitude
of the input generator, is derived in the following. The expres-
sion takes advantage of the AG that is used for the determination
of the free-running oscillation [see Fig. 3(a)] and takes into ac-
count the entire harmonic content of this regime.

Let the free-running oscillation with fundamental frequency
be considered. Provided that the amplitude of the first har-

monic component of the voltage at a given circuit node is , a
voltage AG, operating at , with amplitude ,
can be connected in parallel at the particular node without
perturbation of the steady-state solution [see Fig. 3(a)]. Now, an
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Fig. 3. Semianalytical estimation of the frequency-division bands of the
harmonic-injection divider from the knowledge of the free-running oscillation
solution and its derivatives. (a) Circuit arrangement, based on the use of an AG,
to obtain the derivatives. (b) Comparison between the synchronization curves
obtained from (2) and those obtained from HB, with 15 harmonic components.
As the input power increases, less agreement is obtained due to the reduced
validity of the linearization (2).

input RF generator will be introduced at any circuit loca-
tion. Assuming a frequency division by , the fundamental fre-
quency and first harmonic component of the voltage at the node

will be, respectively, denoted and . The input
generator can then be expressed as
with being the opposite of phase shift between the frequency
component at at the node and the input generator at .
In the presence of the AG, absolute dependence can be consid-
ered of the circuit variables on the amplitude and frequency of
this generator [2], [4]. This enables writing

(1)

where is the total current-to-voltage relationship at the fun-
damental frequency at the node . For small input-gener-
ator amplitude , a Taylor-series expansion of (1), about the
free-running oscillation point ( ) can be carried
out as follows:

(2)
with and . Using the AG
introduced at the node , the derivatives of the free-running os-
cillation can be numerically calculated through increments in
the frequency and amplitude of this generator [see Fig. 3(a)]
with the HB equations as the inner tier. The use of the AG for
this derivative calculation enables taking into account the en-
tire harmonic content due to the absolute dependence of (1) on
the AG value. The solution of (2) is an ellipse in the plane de-
fined by and centered about the free-running oscillation

point , . The inclination is determined by the derivatives of
. The ellipse constitutes the synchronized solution curve for

low-input generator amplitudes (due to the first-order expansion
of the Taylor series). The infinite-slope points of the ellipse (one
at each side) are local/global saddle-node bifurcations (see the
Appendix). Thus, only one section of the synchronization curve
(either the upper or lower section) can be stable.

The division bandwidth by the order is given by
twice the maximum value of the increment in (2) versus
the phase shift as follows:

(3)

where , , and , respectively, are the angles, at the origin of
the admittance diagram (free-running oscillation), between the
derivatives and (in this order), between the
derivatives and , and between the deriva-
tives and . The dependence on the different
angles prevents the establishment of a general criterion for the
enlargement of synchronization bands. However, the cases

and are favorable since they increase the sen-
sitivity of to the input generator. In addition, the magnitude
of the frequency derivative should be minimized.

Since the derivatives with respect to the free-running oscil-
lation amplitude and frequency are independent of the division
order , the division capabilities for given are determined by
the sensitivity of to the input generator at . Expression
(2) enables a simple evaluation of these capabilities. Here, it has
been used for the prediction of the divided solutions at
and . The results are shown in Fig. 3(b), where they
can be compared with those from the HB analysis through the
technique explained in Section III-B using 15 harmonic compo-
nents. For dBm, the division curves, both for
and , are almost overlapped with those from HB analysis.
As the input power increases, the nonlinear behavior reduces
the accuracy of the first-order Taylor-series expansion (2). This
is why less agreement is obtained for dBm. To our
knowledge, this is the first time that accurate expressions for the
semianalytical calculation of frequency-division bands (only in-
volving the knowledge of the free-running oscillation solution
and its derivatives) are provided and demonstrated.

B. HB Analysis of Synchronization Bands

When the input-generator amplitude is not limited to small
values, the frequency-divided solution by order is obtained
through HB simulation, using the AG, which now operates at the
divided frequency [2]. The AG amplitude

and phase are either optimized or calculated (through
an error-minimization algorithm) to fulfill the nonperturbation
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condition . If the variation of a parameter is now consid-
ered (for instance, the input frequency ), the turning points
of the ellipsoidal curves can be circumvented through parameter
switching [2]. A simpler procedure is employed here, enabling
better accuracy and more efficient simulation for divisions of
high order. In the new procedure, a sweep is carried out in the
AG phase between and calculating,
for each point of the sweep, the two variables and the pa-
rameter in order to fulfill . Another possibility is to set

and perform a sweep in the generator phase
. Note that the circuit variables and the parameter are pe-

riodic in phase, as can be gathered from (2), and do not exhibit
turning points versus this variable. This enables a straightfor-
ward tracing of the synchronization curve.

The technique has been applied to obtain the divided-by-four
and divided-by-five solutions for the two input-power values

dBm and dBm [see Fig. 3(b)]. Each so-
lution point of the phase sweep is a point of the closed synchro-
nization curve (see the Appendix). The synchronization band-
width is given by the absolute minimum and maximum of the
curve , i.e., . A complementary sta-
bility analysis is necessary to determine the stable-solution sec-
tion. In this case, the upper part of each curve (between the two
outer turning points) is stable.

IV. OPTIMIZED DESIGN OF THE

HARMONIC-INJECTION DIVIDER

In this section, simulation tools are used for the correction of
the frequency-divider design, when parasitic elements are taken
into account. The external low-frequency feedback loop is in-
troduced to increase the division bandwidth. A new technique
based on the tracing of the synchronization locus on a two-pa-
rameter plane allows the optimum selection of the loop param-
eters.

A. Effect of the Parasitic Elements

In the analysis carried out here, the accuracy in the descrip-
tion of the linear network has been increased in successive steps
with a gradual introduction of parasitic elements and microstrip
discontinuities. Two major negative effects can be expected:
the frequency shift of the synchronization bands and the reduc-
tion of these bands. The frequency shift in the synchronization
band can be avoided through reoptimization of the free-run-
ning oscillation regime by setting the frequency of the AG to

. This allows the free-running oscillation fre-
quency and amplitude to be maintained at the desired values

and . After each new inclusion of parasitic el-
ements or discontinuity models, a couple of variables (for in-
stance, a line length and width) are optimized/calculated so as to
fulfill the free-running oscillation condition . Setting the
free-running oscillation frequency to ensures that the syn-
chronization bands will be centered about this value, at least
for small input power. The stability of the design, together with
the oscillation startup conditions, must be checked at each step.
After each free-running oscillation analysis, the synchronization
band is determined. This technique enables the identification of

Fig. 4. Method to prevent the frequency shift of the division bands as parasitics
elements and discontinuities are introduced in the circuit description during the
design process. The solution curves, corresponding to the division orderN = 4,
have been obtained through HB with 15 harmonic components. The curves are
always centered about the output frequency f = 4:5GHz. The input power is,
in all cases, P = �2 dBm.

any possible elements causing a substantial bandwidth reduc-
tion.

An example of the application of the technique is shown in
Fig. 4. The synchronization curves corresponding to the divi-
sion order and input power dBm are shown
at different stages of the circuit design. Note that all curves, ob-
tained through HB, are centered about the values GHz
and V as a result of the free-running optimization of the
oscillator. The biasing networks have been implemented using
radial stubs along with quarter-wave lines. The major reduction
of the synchronization band has been found to be due to the input
radial stub. After noting this, a different implementation of the
bias filter should have been employed. However, the purpose
of this study was the development of analysis and optimization
tools only and no investigation of the optimum divider topology
or implementation has been attempted. The demonstrator has
been implemented on plastic substrate (Cuclad 2.17) using spe-
cific microwave drilling tools instead of chemical processes, in
order to match the physical dimensions of the lines. Some notch
filters to eliminate spurious responses have been used. Metallic
via-holes have been used to minimize the parasitic inductance
in ground connections.

B. Increase of Synchronization Bands Through an External
Low-Frequency Feedback Loop

The injection-locking phase-locking techniques [3] rely on
the addition of a low-frequency feedback loop to the injec-
tion-locked oscillator. Here, they are applied to the frequency
divider by order . The addition of the low-frequency feed-
back loop allows the use the low-frequency intermodulation
term provided by the nonlinearity to
increase the sensitivity to the input generator and, thus, the
synchronization bands. The term gives rise to a low-frequency
error signal at the transistor drain terminal. This signal is
extracted through a choke and amplified in the feedback loop.
The differential amplifier compares the low frequency-signal
extracted at the drain voltage with a dc reference voltage.
The amplifier output is connected to the varactor diode and
this modifies the self-oscillation frequency so as to decrease
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the frequency error, as in a phase-locked oscillator. Thus,
phase-locking techniques and harmonic injection are combined
to increase the frequency-division bands. The enlargement of
the synchronization bandwidth depends on the voltage gain

of the dc amplifier and the phase shift that this amplifier
introduces in the low-frequency feedback signal [3]. Here, the
output of the feedback loop is connected to the cathode of the
varactor diode. For each phase shift , the new value of the
divided frequency can be approximated as follows:

(4)

where is given by (2) and is the frequency sensi-
tivity of the VCO. Thus, the new synchronization bandwidth
can be determined calculating the maximum of (4) with respect
to through derivation. However, the introduction of the loop
filter modifies the derivatives of in (2). In addition, the com-
bination of (4) and (2) only applies when the loop bandwidth
equals or exceeds the locking bandwidth [3]. Instead, a more
accurate prediction, for low input-generator power, can be ob-
tained recalculating the derivatives in the presence of the loop
and applying (2). It must be taken into account that the syn-
chronized solutions in the harmonic-injection divider with the
low-frequency feedback loop are expressible through a one-fun-
damental Fourier-series expansion of the circuit variables. Thus,
frequency-domain analysis techniques, such as the linear esti-
mation (2) or HB must be able to provide these solutions.

C. Synchronization Loci Versus Two Parameters

In practical circuits, it can be of primary interest to predict
the influence of a given parameter (such as the input gener-
ator amplitude) over the frequency bandwidth of synchronized
behavior. When this second parameter is taken into considera-
tion (in addition to ), the nonlinear evolution of the synchro-
nization bands can be analyzed through HB by performing two
nested sweeps. In the external sweep, the second parameter is
varied in the expected range. In the case of the input generator
amplitude , for instance, this range is between small signal
and a few volts. In the internal sweep, the input-generator phase

is varied between 0 and 360 , while keeping .
Thus, double sweep, in and is carried out. At each point of
the double sweep, the AG frequency and amplitude
are determined. Since the phase variation is always limited to
the interval 0 , 360 , the double sweep does not require a big
computational effort.

The double sweep provides conic figures in the three-dimen-
sional space defined by , , and . If the synchroniza-
tion curves are regular enough, the synchronization locus in
the plane , is simply given by the projection of the three-
dimensional figure over this plane (see the Appendix). If the
synchronization curves contain more than two turning points
(one at each side), a projection of each of these points is nec-
essary to take into account the possible hysteresis phenomenon
[2], [4]. This technique enables tracing the bifurcation loci in a
very simple fashion (through two nested sweeps). Alternatively,
when using in-house software, the locus can be obtained from
the turning-point condition , which pro-
vides a curve in the plane , .

Fig. 5. Frequency divider by N = 4 for the bias point V = �0:5 V
and V = 2:2 V. “HIPLL” stands for harmonic-injection phase-locked loop
and “HID” stands for harmonic-injection divider. (a) Solution curves in the
three-dimensional space, defined by the input-generator amplitude, divided by
four frequency f and output voltage. (b) Projection over the plane defined by
the input-power and output frequency f , showing the evolution of the operation
bands versus the input power.

The above technique has been applied to obtain the varia-
tion of the frequency-division bands of the divider circuit, with
and without the inclusion of the low-frequency feedback loop,
versus the input power. The voltage gain of the low-frequency
amplifier is dB. The two conic figures for
are represented in Fig. 5(a), whereas the projection of both fig-
ures over the plane defined by the output frequency and input
power ( , ), giving the two synchronization loci, is shown
in Fig. 5(b). For the input-power values that have been employed
here, the self-oscillation is not extinguished so the two bifurca-
tion loci are open in the upper part. As can be seen, the introduc-
tion of the feedback loop enables a three-times larger synchro-
nization bandwidth for the higher input-power values. Measure-
ment points have been superimposed with very good agreement.

The projection over the plane defined by the output fre-
quency and output power ( , ) is shown in Fig. 6. Note
the similar inclination of the two families of solution curves
(with and without feedback loop). Smooth variations of output
power versus the divided frequency are obtained for all the
input-power values. The upper section of each synchronization
curve (defined between the two turning points) is stable, as
has been verified through the systematic application of the
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Fig. 6. Output power forN = 4 versus the divided frequency f for different
levels of input power with (HIPLL) and without (HID) an external feedback
loop.

Fig. 7. Stability analysis of a solution point of the frequency divider by
N = 4 with the low-frequency feedback loop. For this particular plot, the
input frequency is f = 18 GHz and the input power is P = �10 dBm. The
systematic application of this tool has shown the stability of the upper sections
of the solution curves in Fig. 6.

Nyquist stability criterion [6]. The stable plot resulting from
one of these analyses, corresponding to the input frequency

GHz and the input power dBm, is shown
in Fig. 7. Due to the closed shape of the solution curves and
the stability of the entire upper sections of these curves, the
observation of hysteresis would be unlikely. This absence of
hysteresis has been confirmed experimentally.

The variations of the frequency-division bandwidth versus the
loop-amplifier gain have also been analyzed. The synchroniza-
tion locus (Fig. 8) has been traced in the plane defined by the
output frequency and the voltage gain , for con-
stant input power dBm. The locus shows that larger
synchronization bandwidths can be obtained for higher values
of the amplifier gain. To our knowledge, this is the first time that
this synchronization analysis is applied to frequency dividers by

and to frequency dividers with external feedback loop.
The conic figures corresponding to the division order

are shown in Fig. 9. Fortunately, the visible turning points in the
middle of the division bands take place in the lower unstable sec-
tions of the curves and do not give rise to hysteresis. For input

Fig. 8. Variations of the frequency division band for N = 4 with the voltage
gain G of the loop amplifier for the input-power value P = �2 dBm. The
two curves constitute the saddle-node bifurcation loci of the divider circuit in
the plane defined by the output frequency f and G .

Fig. 9. Synchronization curves of the divider circuit, when operating as
frequency divider by N = 5, in the three-dimensional space defined by the
divided frequency, input-generator voltage, and output voltage.

frequency GHz, the relatively large oscillation band-
width of the varactor-controlled oscillator enables the switching
of the division order between and . For ,
the central frequency of the divider must be switched (through
the varactor bias) to GHz. For V, the divi-
sion order is , whereas for V, this order is

. The experimental spectra are shown in Fig. 10. Addi-
tional filtering of the divided frequency might be necessary for
some applications.

V. ULTRASUBHARMONIC SYNCHRONIZATION

The possibility of ultra-subharmonic synchronization in the
MESFET-based divider has been investigated. The use of frac-
tional-order dividers in a transmitter–receiver system would en-
able reducing the number of synthesized oscillators since the
output of one synthesizer at could be used to synchronize
a VCO at . The synchronization bandwidth de-
creases with and and may be negligible for most and

values (see the Appendix). However, at least for relatively
small values of and , this kind of synchronization can be
practically achieved.

The prediction through simulation of fractional synchroniza-
tion bands is difficult. In an earlier work [10], these bands were
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Fig. 10. Experimental switching of the division order of the frequency divider
through the modification of the bias voltage of the varactor diode. (a) Bias
voltage V = 0 V. The division order is N = 4. (b) Bias voltage V =

�13 V. The division order is N = 5.

estimated through admittance diagrams, obtained by sweeping
the phase of an AG. Here, the new technique (in which the am-
plitude and phase of the solution curves are calculated versus
the AG phase) is employed. The synchronization band at
( ) is analyzed using a Fourier-series expansion at the
fundamental frequency . Thus, the oscillation fre-
quency is , while the input generator operates at

. The frequency is due to intermodulation be-
tween and . The use of an AG at the
oscillation frequency enables the tracing of the synchro-
nization curves through a phase sweep.

The synchronized solution corresponding to the rotation
number has been analyzed here. The closed
solution curve, versus the input frequency, has been calculated
before and after the introduction of the low-frequency feedback
loop (Fig. 11). The simulation results can be compared, in each
case, with the two experimental points showing the beginning
and end of the synchronization band. For the relatively high
input-generator power, the bending of the respective Arnold
tongue gives rise to solution curves that are not centered about
the free-running oscillation frequency. To our knowledge, this
is the first time that these division bands of fractional order
have been obtained through frequency-domain simulation. The
enlargement of the bands through the low-frequency feedback
loop enables the use of this kind of synchronization in practical
communication systems.

Fig. 11. Frequency division by the fractional order N = 2=3 with external
feedback loop. For the relatively high input-generator power, the bending of the
synchronization locus gives rise to solution curves that are not centered about
the free-running oscillation frequency.

VI. PHASE-NOISE ANALYSIS

For the phase-noise analysis of the frequency divider, the con-
version-matrix approach [11], [12] has been employed. This
avoids the need of obtaining a system equivalent of the circuit,
identifying the different system blocks, as has been done in [3].
The circuit is analyzed as a whole, with noise generators, mod-
eling the noise contributions. A set of noise sources operating at
the sidebands is considered with
and being the frequency offset from the carrier.
The noise-generator vector at the sideband is denoted

. The noise perturbations give rise to sidebands
with in the circuit variables. For their cal-
culation, the HB equations are linearized about the nonlinear
steady state, replacing the nonlinear devices by their conversion
matrixes and obtaining the linear-network matrixes at the side-
bands. The sideband phasor of the output voltage at the load
resistance at is given by

(5)

with being conversion matrixes. The correlation coeffi-
cients of the output voltage are given by . In this
calculation, the correlation matrices of the noise-source bands
must be taken into account.

In the analysis carried out here of the frequency divider by
, the noisy input generator is represented by an ideal

source at and two noise sidebands at . The
AM noise of the input generator is neglected for the calcula-
tion. For the oscillator contributions, a voltage noise source, in
series with the transistor gate, is introduced, to account for the
low-frequency noise, together with white noise sources. Typical
values have been used, with experimental fitting. In Fig. 12, the
phase-noise spectral density of the divider has been evaluated
for GHz and dBm before and after the
introduction of the feedback loop, and compared with the phase
noise of the input source and the phase noise of the free-run-
ning oscillator. The latter has been calculated using both the car-
rier-modulation approach [11] (for small frequency offsets) and
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Fig. 12. Phase-noise spectral density of the frequency divider by N = 4 for
f = 17:8 GHz and P = �10 dBm.

Fig. 13. Variations of the phase-noise of the frequency divider with and
without low-frequency feedback loop, along the division band, for constant
input power P = �10 dBm and different values of the frequency offset from
the carrier. In all cases, an increase is observed at the limits of the division band.

the conversion-matrix approach. The experimental phase-noise
spectra, for the divider without low-frequency loop and for the
divider with low-frequency loop, are also shown. Near the car-
rier, the output of the harmonic-injection divider shows a phase-
noise improvement of approximately 9 dB close to the theoret-
ical 12 dB of static predictions. The introduction of the low-fre-
quency feedback loop gives rise to an improvement of approx-
imately 17 dB. The slight disagreement close to the carrier is
believed to be due to inaccuracy in the model of the loop am-
plifier. Far from the carrier, the two designs reach, as expected,
the phase-noise level of the free-running oscillator.

The phase-noise reduction in the divider with low-frequency
loop is due the high gain of the amplifier [3]. The phase-noise
spectrum shows a “bump,” related to the phase margin of the
linearized divider, under the presence of the feedback loop. The
bump is observed around the damped natural frequency of the
system, which closely depends on the location of the loop-am-
plifier pole ( kHz), amplifier gain, and transistor oper-
ation point [3]. The simulation through the conversion matrix
approach accurately predicts this bump.

Fig. 13 shows the variation of the phase-noise spectral den-
sity along the synchronization curve for constant input power

dBm and different values of the offset frequency.

Fig. 14. Spectral density of the amplitude noise, for three different values of
offset frequency, in the middle and at the two ends of the division band (f =

17:932 GHz and f = 18:072GHz). The input power is P = �10 dBm.

As can be seen, the phase noise increases as the limits of the
synchronization band are approached, in agreement with the
results of other authors [13]. Close to the saddle-node bifur-
cations that constitute the ends of the synchronization band, a
Floquet multiplier of the periodic regime approaches the real
value [14]. A multiplier with magnitude close to one
means a long-lasting transient due to the relationship between
the Floquet multipliers and exponents , with

being the period of the steady-state regime and being an in-
teger. This slow transient, continuously interrupted by the noise
perturbation, gives rise to noise amplification of the noise spec-
trum about and its harmonic components [14]. This noise
amplification will generally be unequal at the two sidebands of
the output voltage. It is linear up to the immediate neighborhood
of the bifurcation [15] so it can be predicted through the conver-
sion-matrix approach (5). The noise amplification is in close re-
lationship with the stability margin, which decreases as the bor-
ders of the ellipsoidal synchronization curve are approached.

The simulation of the amplitude noise in the divider without
feedback loop for dBm in the middle and close to
the two limits of the division band ( GHz and

GHz), is shown in Fig. 14. The impact of the crit-
ical multiplier on the noise spectrum depends on the way how
this multiplier varies with the input frequency, i.e., ,
which gives rise to the asymmetry in the curves of Figs. 13
and 14. Note that the noise degradation occurs in the immediate
neighborhood of the limits of the synchronization band so the
divider is useful for most of the synchronization bandwidth.

VII. CONCLUSIONS

The design of analog frequency dividers relies on the mul-
tiple Arnold tongues of highly nonlinear oscillators and requires
powerful simulation tools with control over the self-oscillation
and its harmonic content. In this paper, design and optimization
tools have been provided with new simulation techniques that
efficiently circumvent the turning-point problem of the synchro-
nization curves and the lack of accuracy in analog divisions by
high order. The techniques enable setting the divider frequency
and output power and overcome some of the undesired effects
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of parasitic elements. Phase-locking techniques have also been
employed, through the inclusion of a low-frequency feedback
loop, to increase the division bands. The harmonic-injection
phase-locked dividers are nonlinearly simulated and optimized.
The output noise is analyzed through the conversion matrix ap-
proach. The variations of the phase and amplitude noise along
the synchronization band have also been studied and related
with the proximity to the saddle-node bifurcations, delimiting
the synchronization bands. Using the new techniques, a har-
monic-injection phase-locked divider by four and five, based
on a MESFET transistor, has been designed and experimentally
characterized, with very good results.

APPENDIX

Here, some concepts of nonlinear dynamics [4], [7] that di-
rectly apply to harmonic-injection dividers are summarized to
help the understanding of this paper.

A. Phase-Space and Stability

In the phase-space representation of the solutions of a non-
linear circuit, a state variable is assigned to each axis of
the coordinate system [4]. In forced systems (with time-varying
generators), the time must be included in the state-variable set.
For a periodic forcing (as in a frequency divider), the phase
of this generator can be used instead. In the phase space, the
steady-state solutions give rise to bounded sets or limit sets.
The stable solutions are attractive for all their neighboring tra-
jectories and are called attractors. Solutions that are attractive
only for some of their neighboring trajectories are unstable and
will be called saddle-type solutions. Only stable solutions are
physically observed. A periodic solution, with one independent
fundamental, gives rise to a limit cycle in the phase space. A
quasi-periodic solution, with two incommensurate fundamen-
tals, gives rise to a limit torus.

B. Solutions of Harmonic-Injection Dividers

Harmonic-injection dividers exhibit a free-running oscilla-
tion in the absence of input signal. Let the frequency of this
oscillation be (autonomous frequency). When the input gen-
erator, at the frequency is connected, the autonomous fre-
quency is influenced by this generator and it changes slightly
from its free-running value. The rotation number [2], [4], [7]
is defined . According to the rational or irrational
value of , there are two main types of steady-state solution.
For an irrational rotation number, the frequencies and
are incommensurate and the circuit behaves as a self-oscillating
mixer. The solution in the phase space is a two-dimensional
torus, in agreement with the two individual rotations at and

. If variations in the input generator frequency or amplitude
(circuit parameters) are now considered, the rotation number
may take a rational value that remains constant for some param-
eter intervals. For a rational value or , with

, the solution is periodic with period . In the phase
space, this solution gives rise to a cycle with period .

C. Poincaré Map

The Poincaré map of a steady-state solution is obtained
through the intersection of the corresponding limit set in the
phase space, with a transversal surface. In case of a nonau-
tonomous circuit, with a periodic input generator of period ,
this intersection can be obtained by sampling the steady-state
solution and integer multiples of the input generator
period. This is equivalent to an intersection with the surface

with an arbitrary time value after the steady
state has been achieved [4]. For an solution, the period
is and this intersection provides fixed points. The
invariant sets resulting from the application of the map to stable
solutions are attractors of the map. A torus (or quasi-periodic
solution) in the phase space gives rise to a closed curve in the
Poincaré map, composed of discrete points that are eventually
filled. Stable solutions or attractors in the phase space give rise
to attractors in the Poincaré map.

D. Solution Curves Versus a Parameter

The solution path of a given nonlinear system is the set of
solutions of the system that is obtained when a parameter is
continuously varied. When using HB, the solution path can be
traced in terms of the value of one of the harmonic components
or, for instance, in terms of the output power. In the harmonic-
injection frequency dividers, closed solution curves are obtained
when traced versus the input frequency.

E. Bifurcations

A bifurcation is a qualitative variation of the stability
properties of a solution, when a parameter is continuously
modified. The local bifurcations are due to stability changes in
a single steady-state solution. The global bifurcations are due
to qualitative changes in the global configuration of the stable
and unstable manifolds of a saddle-type solution [4]. In the har-
monic-injection divider, the most relevant bifurcations are those
delimiting the synchronization bands, i.e., providing, versus the
parameter or parameters, the border between frequency-divider
behavior (by a given order ) and self-oscillating mixer
behavior. These bifurcations generally take place at the infinite
slope points of the closed synchronization curves. They are
saddle-node bifurcations of local/global type, at which loss of
synchronization occurs.

F. Saddle-Node Bifurcations of Local/Global Type

Turning-point bifurcations occur at points of infinite slope of
a solution curve, versus a given parameter. A turning (or fold)
point of a solution curve, versus a circuit parameter, is a point
with infinite slope. At this point, a system pole crosses the imag-
inary axis through zero, which gives rise to a singularity of the
Jacobian matrix of the HB system and, thus, to the infinite slope.
When the pole crosses the imaginary axis, a qualitative stability
change takes place in the system. Thus, the turning point nec-
essarily separates sections of the solution curve with different
qualitative stability (different numbers of unstable poles). In
some cases, the turning point separates a stable and an unstable
section. Therefore, it can be viewed, in the Poincaré map, as a
point of collision between a stable and saddle point. The two
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types of solution are destroyed by the collision, which consti-
tutes a saddle-node bifurcation. In a local saddle-node bifurca-
tion, the solution evolves toward a different attractor after the
bifurcation. In the local/global saddle-node bifurcation, prior to
the bifurcation, the unstable manifold of the saddle forms a loop,
containing the node [4], [7]. Only the node is physically ob-
served. However, when the saddle-node bifurcation takes place,
the loop gives rise to an invariant closed curve in the Poincaré
map, i.e., to a quasi-periodic solution. This determines the loss
of synchronization.

G. Bifurcation Loci

In the harmonic-injection divider, the input-generator power
is often considered as an analysis parameter, together

with the input frequency . In the plane defined by
(horizontal axis) and , the set of saddle-node bifurcations
delimiting the division bands by the order is a V-shaped
curve. This curve is the synchronization locus, also called
the Arnold tongue. Synchronized solutions exist inside the
tongue. There is a synchronization locus (or Arnold tongue)
for each rotation number . Theoretically, in between
any two synchronization bands and , there is
another synchronization band , which
should give rise to infinite synchronization bands and, when
represented versus the input frequency, to a fractal dimension
figure, known as the devil’s staircase. The synchronization
bandwidth decreases, however, with and .
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